Unwrapping of DNA-protein complexes under external stretching.

نویسندگان

  • Takahiro Sakaue
  • Hartmut Löwen
چکیده

A DNA-protein complex modeled by a semiflexible chain and an attractive spherical core is studied in the situation when an external stretching force is acting on one end monomer of the chain while the other end monomer is kept fixed in space. Without a stretching force, the chain is wrapped around the core. By applying an external stretching force, unwrapping of the complex is induced. We study the statics and dynamics of the unwrapping process by computer simulations and simple phenomenological theory. We find two different scenarios depending on the chain stiffness: For a flexible chain, the extension of the complex scales linearly with the external force applied. The sphere-chain complex is disordered; i.e., there is no clear winding of the chain around the sphere. For a stiff chain, on the other hand, the complex structure is ordered, which is reminiscent of nucleosome. There is a clear winding number, and the unwrapping process under external stretching is discontinuous with jumps of the distance-force curve. This is associated with discrete unwinding processes of the complex. Our predictions are of relevance for experiments, which measure force-extension curves of DNA-protein complexes, such as nucleosome, using optical tweezers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the nucleosome unwrapping rate controls DNA accessibility

Eukaryotic genomes are repetitively wrapped into nucleosomes that then regulate access of transcription and DNA repair complexes to DNA. The mechanisms that regulate extrinsic protein interactions within nucleosomes are unresolved. We demonstrate that modulation of the nucleosome unwrapping rate regulates protein binding within nucleosomes. Histone H3 acetyl-lysine 56 [H3(K56ac)] and DNA sequen...

متن کامل

Local DNA sequence controls the cooperativity and asymmetry of DNA unwrapping from nucleosome core particles

DNA is tightly wrapped around histone proteins in nucleosome core particles (NCPs), yet must become accessible for processing in the cell. This accessibility, a key component of transcription regulation, is influenced by the properties of both the histone proteins and the DNA itself, in addition to other factors. Here we focus on how DNA sequence affects unwrapping from NCPs, and thus accessibi...

متن کامل

Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways

Escherichia coli single-stranded (ss)DNA binding (SSB) protein mediates genome maintenance processes by regulating access to ssDNA. This homotetrameric protein wraps ssDNA in multiple distinct binding modes that may be used selectively in different DNA processes, and whose detailed wrapping topologies remain speculative. Here, we used single-molecule force and fluorescence spectroscopy to inves...

متن کامل

Solution Scattering and FRET Studies of Nucleosomes Reveal DNA: Unwrapping Effects of H3 and H4 Tail Removal

Using a combination of small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) measurements we have determined the role of the H3 and H4 histone tails, independently, in stabilizing the nucleosome DNA terminal ends from unwrapping from the nucleosome core. We have performed solution scattering experiments on recombinant wild-type, H3 and H4 tail-removed mutants and...

متن کامل

Op-nare120423 1..13

Eukaryotic genomes are repetitively wrapped into nucleosomes that then regulate access of transcription and DNA repair complexes to DNA. The mechanisms that regulate extrinsic protein interactions within nucleosomes are unresolved. We demonstrate that modulation of the nucleosome unwrapping rate regulates protein binding within nucleosomes. Histone H3 acetyl-lysine 56 [H3(K56ac)] and DNA sequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 70 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004